Files | Size | Format | Created | Updated | License | Source |
---|---|---|---|---|---|---|
2 | 0B | xlsx zip | 6 years ago |
Download files in this dataset
File | Description | Size | Last changed | Download |
---|---|---|---|---|
sample-simple-sheet-2 | 5kB | xlsx (5kB) | ||
datapackage_zip | Compressed versions of dataset. Includes normalized CSV and JSON data with original data and datapackage.json. | 5kB | zip (5kB) |
This is a preview version. There might be more data in the original version.
Use our data-cli tool designed for data wranglers:
data get https://datahub.io/anuveyatsu/sample-simple-rotten-snake-18
data info anuveyatsu/sample-simple-rotten-snake-18
tree anuveyatsu/sample-simple-rotten-snake-18
# Get a list of dataset's resources
curl -L -s https://datahub.io/anuveyatsu/sample-simple-rotten-snake-18/datapackage.json | grep path
# Get resources
curl -L https://datahub.io/anuveyatsu/sample-simple-rotten-snake-18/r/0.xlsx
curl -L https://datahub.io/anuveyatsu/sample-simple-rotten-snake-18/r/1.zip
If you are using R here's how to get the data you want quickly loaded:
install.packages("jsonlite", repos="https://cran.rstudio.com/")
library("jsonlite")
json_file <- 'https://datahub.io/anuveyatsu/sample-simple-rotten-snake-18/datapackage.json'
json_data <- fromJSON(paste(readLines(json_file), collapse=""))
# get list of all resources:
print(json_data$resources$name)
# print all tabular data(if exists any)
for(i in 1:length(json_data$resources$datahub$type)){
if(json_data$resources$datahub$type[i]=='derived/csv'){
path_to_file = json_data$resources$path[i]
data <- read.csv(url(path_to_file))
print(data)
}
}
Note: You might need to run the script with root permissions if you are running on Linux machine
Install the Frictionless Data data package library and the pandas itself:
pip install datapackage
pip install pandas
Now you can use the datapackage in the Pandas:
import datapackage
import pandas as pd
data_url = 'https://datahub.io/anuveyatsu/sample-simple-rotten-snake-18/datapackage.json'
# to load Data Package into storage
package = datapackage.Package(data_url)
# to load only tabular data
resources = package.resources
for resource in resources:
if resource.tabular:
data = pd.read_csv(resource.descriptor['path'])
print (data)
For Python, first install the `datapackage` library (all the datasets on DataHub are Data Packages):
pip install datapackage
To get Data Package into your Python environment, run following code:
from datapackage import Package
package = Package('https://datahub.io/anuveyatsu/sample-simple-rotten-snake-18/datapackage.json')
# print list of all resources:
print(package.resource_names)
# print processed tabular data (if exists any)
for resource in package.resources:
if resource.descriptor['datahub']['type'] == 'derived/csv':
print(resource.read())
If you are using JavaScript, please, follow instructions below:
Install data.js
module using npm
:
$ npm install data.js
Once the package is installed, use the following code snippet:
const {Dataset} = require('data.js')
const path = 'https://datahub.io/anuveyatsu/sample-simple-rotten-snake-18/datapackage.json'
// We're using self-invoking function here as we want to use async-await syntax:
;(async () => {
const dataset = await Dataset.load(path)
// get list of all resources:
for (const id in dataset.resources) {
console.log(dataset.resources[id]._descriptor.name)
}
// get all tabular data(if exists any)
for (const id in dataset.resources) {
if (dataset.resources[id]._descriptor.format === "csv") {
const file = dataset.resources[id]
// Get a raw stream
const stream = await file.stream()
// entire file as a buffer (be careful with large files!)
const buffer = await file.buffer
// print data
stream.pipe(process.stdout)
}
}
})()